If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x^2=62
We move all terms to the left:
2/3x^2-(62)=0
Domain of the equation: 3x^2!=0We multiply all the terms by the denominator
x^2!=0/3
x^2!=√0
x!=0
x∈R
-62*3x^2+2=0
Wy multiply elements
-186x^2+2=0
a = -186; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-186)·2
Δ = 1488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1488}=\sqrt{16*93}=\sqrt{16}*\sqrt{93}=4\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{93}}{2*-186}=\frac{0-4\sqrt{93}}{-372} =-\frac{4\sqrt{93}}{-372} =-\frac{\sqrt{93}}{-93} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{93}}{2*-186}=\frac{0+4\sqrt{93}}{-372} =\frac{4\sqrt{93}}{-372} =\frac{\sqrt{93}}{-93} $
| 2(5x+8)=-10+16 | | 6c+c-6c=11 | | 22/1/4=x/1/2 | | 19x-511x+4=179 | | X2+16x×63=0 | | 13/40=x/35 | | 3y+-7y+3y=-17 | | 5/25=8/x | | 23g=161 | | 4c=2c+5 | | –25=–5x | | -9x-2=-10 | | A=3.14r7 | | xé10=14 | | 3x-60=8x | | 0x+2=9 | | 17-(6x3)=-16 | | ?x14=63 | | -48=4x+32 | | -j+-5j=12 | | 1/2x^2=33 | | 5.23y+2.02=-2.21 | | 8b+27+8b+27=-6b+186 | | 42×+53x=125x | | 6+(3-x)÷2=1 | | 3.3=(x+4) | | 3z/10+3=-4 | | 6y-8+y^2=0 | | 4-8c-3c+2+.66(9c-3)=14 | | (3x-5)(x-5)=30 | | 10x-3(4+11)=44 | | y=70+.9y |